The Pole of Earth and The Point of Compass

thumbnail
The Poles
Pole are defined as an axis, the polar division of the earth exists a variety, including the magnetic poles of the earth and the geographical poles of the earth:

The Poles of the Earth
The Poles of the Earth
Source : http://www.calendarinthesky.org
1. Earth's Magnetic Pole
Have you ever had a compass? the compass you have will show you the direction of North, East, South and West. This direction is a magnetic direction. The direction indicated by the compass is the result of the pulling force of the Earth's magnetic poles.
The Earth's magnetic pole is not right at the Earth's axis, the Earth's magnetic pole position is fluid, the North direction is indicated as a magnetic North that is affected by the gravitational pull force of the earth, so it has a different value every day, and every where.

2. Earth's Geography Pole
This pole is the original axis of the earth, its position remains at one point, and does not change. The polar position is at 90 degrees from the Equator (North Pole), and also -90 degrees from the Equator (South Pole). The rotation motion of the earth for approximately 24 hours rotates through this axis.
Inclination and Declination of The Compass
Inclination and Declination of The Compass
Source : http://digilander.libero.it
Compass is a tool that use the magnetic poles of the earth. Although the compass does not show the right direction, it can still be used accurately (leading to Earth's geographical poles) with some corrections, such as declination and inclination.
Magnetic declination is a horizontal shift toward the east or the west. Magnetic Inclination is a vertical shift toward the north or east direction of the compass. The value of this declination changes every day, we can check at Magnetic Declination. Meanwhile, the inclination value varies everywhere, depending on the position of the compass in the latitude. If the compass is in the southern latitudes, then the inclination of the compass will lean towards the south, and vice versa.

Points of The Compass
Points of The Compass
Source : https://en.wikipedia.org
Point of Compass is a guide to determine direction, usually used in Navigation system. There are 8 principle directions in this point of the compass system. Namely : North, Northeast, East, Southeast, South, Southwest, West, Northwest.
There are several ways to know the true winds, one of them is by using a compass as I mentioned above. Another way is to use the Sun :

1. Shortest shadow
Plug the stick to the ground in a flat position. With this method we are only looking for the shortest shadow when meridian pass/zawal (Sun at the zenith point), then we see the Sun declination value, if the declination of the Northern Sun is positive, so the shadow of the Sun points south direction, if the declination is South or the value is negative, so the shadow of the Sun leads North direction. But this method has a weakness, if the Sun is right above where we are, so there will be no shadow.

2. Shadows before and after Merpass / zawal
Plug the stick to the ground in a flat position, then make 1 to 3 circles around the stick with the stick as the center point. Observe before merpass, and observe the shadow that the end of the line touching the circle lines you have created. And make a point on the tangent. Observe after merpass, and observe the shadow that the end of the line touching the circle lines you have created. And make a point on the allusion. Connect the 2 points. The first point shows the true West direction, the second point shows of the true East direction.

3. Use the azimutal value of the Sun
This method is practically easier, but this method uses calculations. the first way is Shooting the Sun, then Counting the azimut of the Sun and then pointing towards 0 value (True North).

The above ways will be explained in another article.

Islamic Astronomy Software : Digital Falak

thumbnail
Android is a linux-based operating system for mobile phones such as smartphones and tablet PC. Android provides an opensouce platform for developers to create their own applications for use by a variety of mobile devices.

Android already has some changes starting from android version 1.1 to the current android version 7.0. Of course with the development and improvement of android, the users were involved to develop various applications, both for personal and public purposes.

Android development is also up in the field of Islamic Astronomy. The "Digital Falak" app is one of the applications of Islamic Astronomy based on android, created by Ahmad Tholhah Ma'ruf published in the Playstore. The application is made in 2012 but in 2014 this new application is released. And in the middle of 2015 this app is officially uploaded in Playstore and can be used by many people especially for android users. Download this app in Playstore or in Digital Falak Web
.
Digital Falak Icon
Digital Falak contains several programs, there is Prayer Time, Qibla Compass, Hijri Calendar, Location Data, and Istiwak Time.
Local Prayer Time and Masehi Calendar
• Prayer Time.
Prayer Time in this application displays some data that is: the time of salat Zuhr, Asar, Magrib, Isha, Imsak, Dawn (Fajr), Thulu, and Duha. Available in 2 time, local time and istiwak time. We can also adjust the criteria and ihtiyath time in the setting menu. The prayer time in this application also has the alarm for remember us to do pray.
Istiwa Prayer Time and Hijri Calendar
• Hijri Calendar
The Hijri calendar in Digital Falak uses the two-book method of making it by using "Fathu al-Rouf al-Manan" and "Nurul anwar". Users just choose which books to use in the settings menu. there is also Masehi/public Calendar

Qibla Compass and Rashdul Qibla Calculation
• The Qiblah Compass
The Qiblah compass is quite easy to understand especially for who do not know the calculation of the Islamic Astronomy, because in it already has a Qibla Compass program, the direction shown by the compass will face the qibla, but this application has a weakness, because the base of the compass using magnetic sensor, then this application is very influential with the magnetic force that surrounds the user.
The Qibla Compass feature also requires magnetic sensors, so for mobile devices that do not have magnetic sensors can not use this feature. Instead there is also a feature Rashdul Qibla calculation, the calculation of the time where the shadow of the Sun will face the qibla.

Location Data Menu
• Location data
Location data in digital falak can be used to find the latitude, longitude, height of place, time zone and place name according to the position in GPS. This data is always updated and can also update by using the internet after the phone is connected to the internet.

This application also there is a version of the website, we will discuss in the next article.

Examples for Qibla Calculation in Indonesia

thumbnail
In the previous post has been explained little about the formula of the direction of qibla for the region in Indonesia. so all places in Indonesia can use that formula to serve as a determinant of Qibla direction. Visit this Link. Qibla Formula for Indonesia

In this post, we will give 3 examples of calculations, first at Istiqlal Mosque-Jakarta, Baiturrahman Mosque-Semarang and al-Akbar Mosque-Surabaya.
Coordinate of Ka'ba in Google Earth
Coordinate of Ka'ba in Google Earth
These 3 examples will be calculated by the coordinates of the Ka'ba that took from the Google Earth App. The coordinate of Ka'ba is 21˚ 25 '33,67" N and 39˚ 49 '33.27" E.

1. Istiqlal Mosque, Jakarta
Coordinate of Istiqlal in Google Earth
Coordinate of Istiqlal in Google Earth

Qibla Calculation For Istiqlal Mosque :
a. Latitude: 6˚ 13' 00,97" S
b. Longitude: 106˚ 50' 11,54" E
Istiqlal Qibla Direction
Istiqlal Qibla Direction
c. λd = (λx - λx). = (106˚ 50' 11,54" -39˚ 49 '33.27") = 67˚ 0' 38,27"
d. Cotan QD = Tan φk * Cos φx / Sin λd - Sin φx / Tan λd.
Cotan QD = Tan 21˚ 25 '33,67" * Cos -6˚ 13' 00,97" / Sin 67˚ 0' 38,27" - Sin -6˚ 13' 00,97" / Tan 67˚ 0' 38,27".
QD = 64˚ 50' 23,85"
e. QA = 360 - QD
QA = 360 - 64˚ 50' 23,85"
QA = 295˚ 09' 36,15"

2. Baiturrahman Mosque, Semarang
Coordinate of Baiturrahman in Google Earth
Coordinate of Baiturrahman in Google Earth

Qibla Calculation For Baiturrahman Mosque:
a. Latitude: 6˚ 59' 00,23" S
b. Longitude: 110˚ 26' 45,67" E
Baiturrahman Qibla Direction
Baiturrahman Qibla Direction
c. λd = (λx - λx). = (110˚ 26' 45,67" -39˚ 49 '33.27") = 70˚ 37' 12,4"
d. Cotan QD = Tan φk * Cos φx / Sin λd - Sin φx / Tan λd.
Cotan QD = Tan 21˚ 25 '33,67" * Cos -6˚ 59' 00,23" / Sin 70˚ 37' 12,4" - Sin -6˚ 59' 00,23" / Tan 70˚ 37' 12,4".
QD = 65˚ 30' 9,32"
e. QA = 360 - QD
QA = 360 - 65˚ 30' 9,32"
QA = 294˚ 29' 50,67"

3. al-Akbar Mosque, Surabaya
Coordinate al-Akbar Mosque from Google Earth
Coordinate al-Akbar Mosque from Google Earth

Qibla Calculation For al-Akbar Mosque :
a. Latitude: 7˚ 20' 10,95" S
b. Longitude: 112˚ 42' 54,29" E
Al-Akbar Qibla Direction
Al-Akbar Qibla Direction
c. λd = (λx - λx). = (112˚ 42' 54,29" -39˚ 49 '33.27") = 72˚ 53' 21,02"
d. Cotan QD = Tan φk * Cos φx / Sin λd - Sin φx / Tan λd.
Cotan QD = Tan 21˚ 25 '33,67" * Cos -7˚ 20' 10,95" / Sin 72˚ 53' 21,02" - Sin -7˚ 20' 10,95" / Tan 72˚ 53' 21,02".
QD = 65˚ 56' 13,92"
e. QA = 360 - QD
QA = 360 - 65˚ 56' 13,92"
QA = 294˚ 03' 46,08"

From the 3 examples above can be concluded that true the direction of the Indonesia is North West, its value is about 294 degrees.
Additional added :
- Remember! that the value of North latitude and East longitude is positive and the value of South latitude and West longitude is negative. Visit Spherical Earth System.
- In the trigonometry formula above use Cotangen formula, if you using a calculator or excel program can use :
For Excel Atan (1/(Tan φk *......)) or Atan((Tan φk *.......)^-1)
For the Scientific calculator change "Atan" with "Shiftan".

Calculation of Qibla Direction for Indonesian Places

thumbnail
Indonesian Map's
Indonesian Map's
Indonesia is located on the east of the Ka'ba, and is in the south of the Ka'ba, so in logical direction, the direction of the qibla in Indonesia leads to the North West. there are some data that must be searched first to calculate the direction of qibla, that is:

1. Latitude of Ka'ba (φk)
2. Longitude of Ka'ba (λx)
3. Latitude Place (φx)
4. Longitude Place (λx)

For Latitude and Longitude data Ka'ba is usually constant / fixed, but some people vary in its determination, one of the Ka'ba coordinate value ​​used is 21˚ 25 ' 21,01" N and 39˚ 49' 34,33" E. For coordinate data for the place can be searched with various tools, such as GPS. visit this link. Determine Coordinate with GPS.

This calculation uses the assumption that the Earth is a sphere, so this way using the Spherical Algorithm theory. The steps must be taken as follows:

1. Finding the longitude difference (λd) with the formula : λd = (λx - λx).
2. Finding the qibla direction angle (QD) with the formula: Cotan QD = Tan φk * Cos φx / Sin λd - Sin φx / Tan λd.
3. Then finding qibla azimuth value (QA) with the formula: QA = 360 - QD

Average Qibla Azimuth of Indonesia
Average Qibla Azimuth of Indonesia
The direction of the Qiblah that we count, measured from the True North clockwise to the value of the azimuth angle. For the example calculations will be discussed at the next session.

The Change of Qibla Direction 2

thumbnail
In the previous article, has been described how the potential for changes qibla direction at someplace that caused by the earthquake. Visit this Link! The Change of Qibla Direction.

Now, in this article we will describe one example of the shift of coordinates that caused by the earthquake, and the changing direction of qibla. How big is it? And how big is the change?

Sample of Qibla Direction Change
Simulation of The Change of Qibla Direction
One of the mosques we have sampled is the Baiturrahim mosque in Ule Lheue, Aceh, Indonesia. One of the areas that was hit by the Tsunami on December 26, 2004 with a strength 9.3 Mw. The tsunami was the result of an earthquake in the Indian Ocean, which took victims from six countries : Indonesia, India, Sri Lanka, Thailand, the Maldives and Somalia.

Tsunami
Simulation of Tsunami 2004 in Indian Ocean
Source : Wikipedia.com
Please see some image below, these images we got from Google satellite imagery in Google Earth App, in a few different times.

The Shift of The Baiturrahim Mosque
Image 1 : The Capture of Baiturrahim 2004
Image 1: Satellite images taken on June 23, 2004, before the earthquake occured. in this figure there is the coordinate value of the roof of the Baiturrahim Mosque is 5˚ 33 '21.4 "N and 95˚ 17' 1.7" E.


The Shift of The Baiturrahim Mosque
Image 2 : The Capture of Baiturrahim 2005

Image 2 : Satellite images on January 28, 2005, images taken several months after the earthquake. the coordinates shifted to 5˚ 33 '20.67 "N and 95˚ 17' 1.61" E. coordinates shifted to the South West.

The Shift of TheMosque
Image 3 : The Capture of Baiturrahim 2009

Image 3: Satellite image on June 16, 2009, image taken 4 years after the earthquake. The coordinates again shifted towards the North East, the coordinates are 5˚ 33 '20.97 "N and 95˚ 17' 2.22" E

The Shift of TheMosque
Image 4 : The Capture of Baiturrahim 2010

Image 4: Satellite images on July 8, 2010, shifting South East to 5˚ 33 '20.9 "N and 95˚ 17' 2.39" E

The Shift of TheMosque
Image 5 : The Capture of Baiturrahim 2017
Image 5 : The last image on January 29, 2017, shifting North East to 5˚ 33 '20.95 "N and 95˚ 17' 2.54" E
The Shift of The Mosque Latitude
Latitude Shift's
The Shift of The Mosque Longitude
Longitude Shift's
Of the drawings, the greatest shift occurred between June 23, 2004 and January 28, 2005. where between the dates there was a very large earthquake. The latitude shifts by 0.73 " to the South and longitude shifts by 0.09" to the West.

There was also a substantial shift, between January 28, 2005 and June 16, 2009, after I searched further, there was also some earthquake that occurred between that date, at Nias, Indonesia in 2005 and at West Sumatra, Indonesia in 2007. The latitude shift by 0.3 " to the North and longitude shifts by 0.61" to the East.

For the other date the shift is not too large, is between 0.05 "- 0.17", because there is no earthquake, the shift according to our, occurs caused by the shift of the earth's plate, but not too large, so it didn't cause an earthquake.

As for the qibla shift, I have calculated the direction of the qibla from some conditions with spherical algorithms calculation, can be seen from the following table:
The Shift of The Mosque qibla
Qibla Direction Shift's
The shifting direction of the qiblah that happened was very small, and almost no effect, less than 0.5". The 0.5" impact was caused by the tsunami that occurred on December 26, 2004. Then the impact of the Nias and West Sumatra earthquakes was less than 0.3", while in other condition, the qibla direction shifted less than 0.2" .

A shift in the direction of qibla is very possible, although the shift is very small, but it should be checked regularly, because if the slight shift is repeated several times it will produce a big shift.

Visit this link for the previous discussion. The Change of Qibla Direction 1

The Change of Qibla Direction

thumbnail
Is it possible to change the direction of qibla ? may be. the direction of qibla still facing the Ka'ba in Mecca, but the direction that will shift. qibla direction may occur, this is caused by a shift in the earth's plate, or earthquake.
The Chage of Qibla Direction caused by earthquake
Source : www.emaze.com
In a study conducted by Yusfania, she explained about the shift location caused by the earthquake that occurred in Sumatra or the Indian Ocean, the study resulted in the conclusion that the earthquake that occurred in the Indian Ocean in April 2012 led to a position shift of 0.3 - 2.4 meters to North East.

This is a fact that we must accept, because if the position of a place changes, it will certainly change the coordinates of the place, and then it will have an impact on the shift in direction of the qiblah at someplace.

Earthquakes are very common, especially in Indonesia. Indonesia is a country with earthquake potential. This happens because the location of Indonesia which is the meeting center of the plates of the Earth, among others, Eurasia, the Philippines, Caroline, Indo-Australia, Pacific and several other minor plates (Hamilton: 1979). In addition, this earthquake is caused by tectonic activity of the plates. Plates it continues to move like the Eurasian and Indo-Australian plates which have an average moving northward, while the Philippine plate movements tend towards the northwest (Hamilton: 1979 in USGS: 2011). Associated with the philipine plate, the Caroline plate has a movement towards the southeast in part of Aru riverbed and towards the northwest in part of Yap riverbed (Seno: 1992 in USGS: 2011).

Therefore, in order to minimize the change of direction of the qibla at someplace, the direction of the qibla should be updated regularly. Because if the shift is collected caused by several earthquakes, then surely the impact will be great.

Renewal of the direction of the qibla should be done by experts, Islamic Astronomer, The Jurist and also Geodesy master. Intensive research should be made to the direction of the qibla at someplace that should also involve the community. So that the public knows about the facts of shifting the direction of qibla caused by a shift of the earth's plate, and for the public to be more careful.

Visit this link for the next discussion. The Change of Qibla Direction 2

Advantages and Disadvantages of Handheld GPS

thumbnail

Advantages and Disadvantages of Handheld GPS

Actually there are many types of GPS, not just handheld / portable GPS, but also GPS Navigation and GPS Smartphone. For the first of these I will discuss in advance about the GPS handheld, and now I will explain the advantages and disadvantages of GPS handheld.
handheld gps
Handheld GPS
GPS handhelds have a high sensitivity in receiving GPS signals and some devices are capable of receiving dual satellite systems from GPS and Glonass. We can also determine the height of place and direction in an area with satellit signal, there are also various additional sensors, for example barometric altimeter and electronic compass so that the determination of height and direction can be done without using satellite signal. This is usually an option in the settings.

The use of barometric altimeter sensors usually must first be done altitude calibration somewhere. We can also use this barometric altimeter to plot air or ambient pressure from time to time, which can help to observe changes in weather conditions.

The advantage of this GPS compass is that it is not influenced by the magnetic field and can guide the direction accurately as it is guided by signals from the satellites (not the buit-in compass sensor). This tool is certainly very helpful when measuring the direction of Qibla.

The area is remote with no phone signal and does not have internet. We recommend choosing a handheld GPS device. Maps are already stored inside, though the images are very standard, such as the appearance of road maps and soil contours, the data maps in the handheld GPS more complete, but usually sold separately (for each country) and the price is quite expensive. Maps do not need to be installed or downloaded. Because portable GPS has been installed one country map when marketed.

GPS handheld is better, more durable, waterproof and suitable for outdoor activities. Users need not be afraid of the natural conditions, because handheld GPS devices or portable GPS are designed for nature activities. Using this GPS we can find the way when through high-sensitivity wilderness, which acquires satellite signals quickly and tracks locations in challenging conditions such as trees and cliffs.

The battery can be replaced because it uses AAA batteries. One portable GPS device can last up to 25 hours. Very suitable for adventure activities in areas far from electrical energy.

But the obstacle, GPS handheld in terms of price is still quite expensive, for a GPS device ranges between Rp. 2,000,000.00 to Rp.10.000.000,00 or about $ 150 USD to $ 750 USD.

The disadvantages of all GPS, including GPS handhelds are GPS will greatly affect the geographical conditions of where we are. GPS will work well if where we are still has a wide sky. The following will be described wherever the GPS will experience a weakness in its use:

1.When someone is in the forest. With the conditions of the trees are so much then the signals that can be received will be a little maybe even no depending on the width of the forest.
2.When someone is in the water or when someone is diving. Do not expect to use this tool when diving.
3. Electronic devices that can emit electromagnetic waves may affect performance degradation rather than GPS.
4. Buildings. Not only when inside the building, being between 2 tall buildings will also cause an effect like being in a valley.
5. Signals that bounce, eg when in between high-rise buildings, can disrupt the calculation of navigation tools so that navigation tools can indicate the wrong position or not accurate.
6. Glass film car, especially metal-containing.

Menus and Functions on GPS : Garmin 76 C/CSX

thumbnail
I will explain about some menus or functions on the GPS. This time I use GPS Garmin 76 C/CSX. Some GPS devices also have a similar functions.

How to operate Garmin 76 C or 76 CSX?
GPS Garmin 76 C / 76 CSX
1. Key Functions

Inside GPS 76 C there are several buttons that work include to:
A. Power button: Turns the unit on or off. If this button is pressed and released, it can work to adjust the backlight.
B. Zoom In / Out button: To set the size of the scale.
C. Find Button: To go to find menu page and display mob.
D. Quit button: To cancel data entry or close the page.
E. Page or Compass button: To go to the main page and turn the electronic compass off.
F. Menu Button: To enter options, confirm messages or data on-screen. This button can also be used for marking Sign and Waypoint.
G. Rocker Keys: To start moving lists, highlight fields, on-screen buttons, icons, enter data or move to the map section.

2. Getting Satellite Data

For the process of revenue data from satellite, then we must pay attention to the place and condition around. It is advisable to use the GPS in the open and have a wide view. The weather conditions must also be in good condition. For the steps are:
A. Turn on the GPS by pressing the power button. If the GPS has been turned on then it will say "Welcome". The page will quickly face the satellite page.
B. Observe the satellite page and GPS status message when it appears at the top of the page, and soon it will look like a GPSmap. This indicates it will start to search for satellite exploitation status. Not long after that will automatically show our position (latitude and longitude). Visit Determine Coordinate of Place with GPS for more info.

3. Selecting a Page

For all required information or data can be found in four main pages (display screen). These pages include satellites, maps, pointers, and menus. The trick is to press the page button to find the pages.
A. Satellite page: provides a reference for tracked satellites.
B. Page trip computer: provides data and information related to the science of shipping.
C. Page map: provides a view of a map and reference our navigation movement.
D. Page compass: provides guidance for a purpose and direction.
E. Page altimeter: provides path and pressure elevation.
F. Main menu: an existing directory in GPS to specify other settings.

4. Define Waypoint

Waypoint is a marking of places obtained by satellites in a GPS. To mark a place, we can access in the Find Menu by:
A. Press the page button and select the menu page. Press the Up or Down button and select the "Mark" section.
B. Press the enter key. The mark waypoint page will appear with the word "OK?", Hit enter. Waypoint has been stored in GPS memory.

5. Go to the Waypoint Menu
To enter the waypoint we have marked, then we use the Go To facility. How to use it is:
A. Press the page button and select the menu page. Press Up or Down button and select "waypoint". Press Enter. The waypoint page will appear.
B. Press the Up or Down button and select the tab that contains the desired waypoint name and press Enter. The existing waypoint review page will appear.
C. Press Up or Down button to select "GoTo" and press Enter.

6. Exploration on a Waypoint
In the use of the "Go to" facility, we will be directed to follow the directions on the waypoint. The directions provided are N, S, E, W (North, South, East, West). If we cancel, we can use the compass pointing stick to divert the direction toward us. The steps are:
A. Press the page button repeatedly until the compass page is shown. This page contains a bookmark that marks the direction to go.
B. Press the quit button to move to the map page and watch our progress toward the waypoint. The pointer line will show the map and the position arrow movement as we move it.
C. Press the quit button again to move to the travel page. This page provides travel data such as a travel odometer, maximum speed, and more.
D. To stop navigation, press Menu then select stop navigation and then press Enter.

7. Cleaning Track Log
If we have used GPS for multiple trips, then the map view will be full because storing tracks or paths that we have been through. To use this facility the way is:
A. Press the page button and select the menu page.
B. Press Up or Down button and select "Tracks".
C. Press Enter. Use the Up button and select "Clear". Press Enter.

8. Using Map Page 
To use the map page can be done by:
A. Press the page button to go to the main page to the map page.
B. Press the menu button to navigate to the map page selection.
C. Start moving and observing the position arrow on the top of the map. Use the Rocker button to move and move highlights a map item or look into other map areas.

Determine The Coordinates of a Place with GPS.

thumbnail
In the calculation of Islamic Astronomy, the thing that is always required is the coordinates of a place. Many ways and tools can be used to know these coordinates. One of the most famous ways is using GPS (Global Positioning System)

GPS is a navigation and positioning radio system that utilizes satellites as a means of communication. This tool is usually used in vehicle navigation, be it land, sea or air vehicle. Ship and aircraft communication with the station is needed, in order to avoid accidents. GPS is used to know each ship or aircraft position, then reported to the tower / station supervisor at the nearest port or airport.

This GPS will monitor signals from satellites, then GPS will accept the position of the place be it latitude, longitude or altitude place on Earth.

In the Islamic Astronomy, GPS that easy to use is a type of handheld GPS that can be taken anywhere.

GPS has a different level of accuracy, depending on the brand and type of GPS. but overall the tool is quite accurate in determining the coordinates of a place or area.

In this explanation, I will practice using GPS Garmin 72H, but overall, various GPS has a similar way to operate GPS for coordinate determination. The way is :

1. Turn on the GPS in the field, not in the room, around tall buildings, tunnels, and dense forests.

2. Wait a while, about 1-3 minutes, so that GPS receives satellite to make configuration latitude, longitude and altitude data complete.

3. The minimum number of satellites captured to generate coordinates is 4 satellites. And wait a while until the "Location" or "Accuracy" sign shows the smallest number. That sign is the maximum error of the GPS point being, which is predicted by GPS satellite.

4. Then record the coordinates that appear.

determine coordinate with gps
Garmin GPS 72H
Souce : https://www.amazon.com
Example image above, the resulting coordinates are 38 degrees 51,498 minutes North Latitude (N) and 94 degrees 47.838 minutes West Longitude (W).

5. if you want to know the height of the place, press the "page" several times until entering on the page high information place.

Good luck!

Determine The Direction of Qibla with Google Earth

thumbnail

What's interesting about Google Earth? Of course a lot. For the layman, Google Earth is often used to look at photos of his house, or hometown through space. Of course it's nice to see his hometown clearly visible through Google Earth. Everyone in the world will be able to see it. But not the least disappointed, his hometown was not visible at all, whether it is covered by cloud or satellite has not updated the image.

But different from the astronomers. Google Earth is also usually used by them. The ability of Google Earth to identify the surface of the Earth and define it with the value of latitude and longitude make Google Earth useful as a pointer coordinate of a place and determining the direction of Qibla in some places.

How to find the coordinates and direction of Qibla?, Let's see the following explanation! Previously downloaded Google Earth software first! visit this link! Download.

Looking for coordinates somewhere.
1. Go to Google Earth
2. Search the city name in the search field
3. Move the pointer or mouse to where to look for the coordinates
4. See the coordinate values ​​at the bottom of the screen

Examples of searching for the coordinates of Istiqlal Mosque, Jakarta, Indonesia and Ka'ba, Mecca, Saudi Arabia:

coordinate istiqlal in google earth
Coordinate of Istiqlal, Jakarta, Indonesia

coordinate ka'ba in google earth
Coordinate of Ka'ba, Mecca, Saudi Arabia.

Looking for a Qibla direction somewhere
1. Open Google Earth
2. Find the place to search for the direction of the Qibla, also look for the Ka'ba.
3. Move to place area (place to search direction of Qibla)
4. Press the "ruler" button
determine qibla direction with google earth

5. Click on the area of ​​the mosque and drag the line to the ka'ba
determine qibla direction with google earth

determine qibla direction with google earth

6. Move to the place area again
determine qibla direction with google earth

7. see the results, we can also see the value of the azimuth Qibla in the column.

Good luck!

Rules facing to The Qiblah

thumbnail
kakbah the qibla of moslem
Source : Google Earth Software

Understanding of the direction of Qiblah is very simple, because the problem of the direction of Qibla is only a directional problem, is the direction of the Ka'ba which is in Mecca and each place must have different direction in facing Qibla.

In simple terms it can be seen that the area in the South Kabah facing to the North, the area located in the North Kabah facing to the South, the area in the East Kabah facing to the West, the area in the West Kabah facing East,

If further clarified then the area located in the North East Kabah facing to the South West, the area located in the South East of the Kabah facing to the North West, the area located in the South West Kabah facing the North East and the area located in the North West Kabah facing South East.

It can be a bit complicated if we further see that the earth is round, then there must be a special calculation for it, but if in a state of urgency can use the logic above.

The meaning of Qiblah in language is derived from the word قبل- يقبل - قبلة, which means facing, whereas in term, the islamic astronomers define with the Direction closest to the Ka'ba, The direction in which Muslims confront their faces during the prayer.

So why should we face qibla ???

The scientist of the fiqh agree that facing the Qiblah in the prayer is a requirement of the validity of the prayer, as the syar'I proposition exists:

Allah has commanded this three times, namely in Al-Baqarah: 144,149 and 150:
قد نرى تقلب وجهك في السماء فلنولينك قبلة ترضاها فول وجهك شطر المسجد الحرام وحيث ما كنتم فولوا وجوهكم شطره وإن الذين أوتوا الكتاب ليعلمون أنه الحق من ربهم وما الله بغافل عما يعملون

and in the hadith :
 قال أبو هريرة رضي الله عنه: قال رسول الله صلى الله عليه وسلم: اذا قمت الي الصلاة فاسبغ الوضوء ثم استقبل القبلة وكبر. رواه   البخارى ومسلم

For people around the holy mosque overlooking the Ka'ba is not a problem because they easily do that. Then what about the people who are far away with the Grand Mosque even outside the city of Mecca. Are we still required to face the true Ka'ba? Or just with an estimate only?

The opinion of the scholars:

Imam As Syafi'i & Shi'a Imamiyah:
Obligatory to the Ka'ba itself, both for the near and far.
If you can know the direction of the Ka'ba itself (exact), then it must face in that direction. If not, then just with an estimate only. (az-Zuhaily, Tafsir Al-Munir, p. 234)

Imam Hambali, Maliki, Hanafi & some scholars of Shi'a Imamiyah:
The direction of qibla is the direction in which the Ka'ba is located, not the Ka'ba itself. (As Suyuthiy, Al Asybah Wa An Nazair, p. 116)

The clerical agreement
All scholars agree that the Ka'ba is a qibla for those who are close and can see it. But they differ on the qibla for the distant and can not see it. (as-Sya'rani, Al-Miizaan Al-Kubra p. 116)

Based on the strongness of prejudice, there are 3 methods in determining the direction of Qibla
1. Overlooking Qibla Sure
A person who is inside the Grand Mosque (Masjidil Haram) and sees the Ka'ba directly, must face himself to Qibla with confidence. This is also referred to as "Ain al-Ka'ba".

2. Overlooking Qibla Estimates
Someone who is outside the Grand Mosque so that they can not see the Ka'ba building, they are obliged to face the Grand Mosque as the intent of facing Qibla in a dzan or approximation is called "Jihat al-Ka'ba"

3. Facing Qibla with Ijtihad
Ijtihad can be used to determine the direction of Qibla from a place far from the Holy Mosque, such as someone outside the holy land of Mecca or even outside Saudi Arabia, the method used is "Jihat al-Qiblah"

Why should a mathematical approach in determining the direction of Qibla?
As long as there is a more accurate way why choose another less accurate way, In a qaidah ushul fiqh
لا عبرة بالظن البين خطؤه
"The theory or practice that is based on the zan (allegation) that is clearly wrong is not considered"

Google Qibla Finder

thumbnail
One of the requirements of a valid prayer is facing the Qibla, which is a Ka'ba in Mecca, Saudi Arabia.

To determine the direction of qibla there are many ways, ranging from traditional to modern. Some use a very traditional tool like a stick, some use simple tools but still have a fairly high accuracy such as Mizwala and Istiwaaini, some also use modern tools as well as Teodholite and Total Station. Use of some of these ways may still cause difficulties if who will determine is a beginner.

Nowadays has come a very useful technology for all human activity, that is smartphone. These benefits also apply to the determination of Qibla direction. Lots of users or developers who already take advantage of this technology, a lot of software / program direction of the Qibla is made for smartphones, let alone android smartphone. There are currently around 500 to 600 Qibla direction apps in the playstore, but if we are going to download the app it will be a bit complicated and confused, especially as the accuracy of the apps itself is untested.

But Google has responded to that, Google has presented a web-based qibla direction program that is highly compatible with smartphones especially android and has a very nice interface. The program is called Google Qibla Finder.

To use it we just need to open the browser, any browser through our smarphone, then slide to the site Google Qibla Finder then we will be taken to the Google Qibla Finder page.


Then please note that the GPS position must be in a state of luminous, so that our android can read the coordinates of where we are. In the next step we will choose the interface language we want, then press the Let's Go!


Then Google Qibla Finder will directly calculate, measure the direction of Qibla and apply it to a map which is the location where we are.


If we flip smartphone towards the front, then the interface will turn into a camera and the line appears which is the direction of our place qibla. We can directly mark the direction of Qiblah on our floor through the line that is in our smartphone camera.

Very practical without having to calculate and bring a tool to measure the direction of Qibla. Can we use wherever we are.

Note: There are some things to watch out for, smarphone must support multiple sensors, such as gps, compass and motion sensors, other than that the camera conditions must also be in normal. For the last step I can not exemplify because my camera is in error.

Good luck!

Spherical Earth Coordinate System

thumbnail

Coordinate is a number used to denote a point or a value. Have you ever heard of the term Cartesian Coordinates? A coordinate indicated by the x-axis and the y-axis. With this cartesian coordinate we can see that the area above the x-axis is positive, and the area below the x-axis is negative. While the area to the right of the y-axis is positive and the area to the left of the y-axis is negative.


The spherical coordinate system is also like cartesian coordinates, but the plane in cartesian coordinates is replaced by the spherical. The x-axis in the coordinate of the globe that is the equator (the line that divides the earth into two parts, north and south), and the y-axis in the form of Greenwich line (line connecting the two poles, the north pole and the south pole. This line are in Greenwich London Britaria Kingdom).

Spherical coordinates of the earth consists of two elements namely latitude and longitude. Latitude is an arc or line parallel to the center line of the earth / equator line. The value of the latitude is calculated from the equator line as the 0 point, the positive value for the north and the negative for the south.


Longitude is an arc or line connecting two poles. The value of longitude is calculated from Greenwich as 0 point, the east area of Greenwich is positive and the west area of Greenwich is negative.


Latitude is denoted by phi (φ), the value of latitude ranges from 0 degrees to +90 degrees and 0 degrees to -90 degrees. Longitude is represented by lambda (λ). The values ​​of longitude range from 0 degrees to +179.99 degrees and 0 degrees to -179.99 degrees. For longitude 180 can be positive and negative.


Suppose we will define the position Ka'ba in the form of coordinates (we can get help through the application Google Map / Google Earth). Then the value of Ka'ba coordinate is worth + 21˚ 25 '21,04 "and + 39˚ 49' 34,33" because the position of the Ka'ba is in north latitude and east longitude, it can also be written 21˚ 25 '21,04 " N (North) and 39˚ 49' 34.33 " E (East).

Introduction to Islamic astronomy (Falak)

thumbnail
Falak (Orbit)
Source : bbc.co.uk
The definition of Islamic astronom (Falak) according to language means orbit, whereas according to the term, Falak is a science, the science that discusses the astronomical conditions of celestial bodies associated with Islamic Shari'a. There are 4 scopes in the study of Islamic astronomy :

1. Qibla direction = discuss the Islamic Shari'a on liability facing the Qiblah while praying, even when not only praying but also when slaughtering sacrificial animals and when burying. To know the direction of the Qiblah can be traced with the science of Islamic astronomy in the discussion of the various directions on the surface of Earth that is experienced from geodesy science. visit this link to know what the Rules of Facing The Qibla.

2. Time of Salat = discusses the obligation to perform the prayers in due time. To know the time of prayer is also required Islamic astronomy science that is experienced from the science of the spherical trigonometry  in the discussion of the daily movement of the Sun's pseudo Earth, visit this link to know what the Prayer Times Marker.

3. The first lunar month = this discussion started from the obligation to perform fasting during Ramadan, when will Ramadan come ?, in this case we can know with Islamic astronomy that discusses the Crescent Moon Phase on the surface of the Earth, The phase is influenced by the circulation of the Earth against Sun, because the light of the Moon comes from the Sun, so the Moon as the Earth's natural satellite reflects light from the sun that directly fell to Earth.

4. Eclipse = this discussion also started from the Islamic Shari'a regarding the extinction in praying during the eclipse, when will the eclipse happen ?. In this case we can also know when the eclipse occurred with Islamic astronomy that discusses the phase of conjunction and opposition of the Sun, Earth, Moon in a straight line.

Islamic astronomy is not as difficult as it is in our minds. Islamic astronomy is fun! It has become one of the most rare sciences of today. Indeed seen by the eyes of astronomy more advanced knowledge, but it is a modern astronomy. Not Islamic astronomy. Rarely anyone learns this science, when in fact this science is very important because it is needed in the religion of Islam.